Abstract
Optimal creation of photon Fock states is of importance for quantum information processing and state engineering. Here an efficient strategy is presented for speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving. A transmon qubit is dispersively coupled to a quantized electrical field. We address a Λ-configuration interaction between the composite system and classical drivings. Based on two Gaussian-shaped drivings, a single-photon Fock state can be generated adiabatically. Instead of adding an auxiliary counterdiabatic driving, our concern is to modify these two Rabi drivings in the framework of shortcut to adiabaticity. Thus an accelerated operation with high efficiency can be realized in a much shorter time. Compared with the adiabatic counterpart, the shortcut-based operation is significantly insusceptible to decoherence effects. The scheme could offer a promising way to deterministically prepare photon Fock states with superconducting quantum circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.