Abstract
Ferroelectric organic field-effect transistors (Fe-OFETs) have attracted intensive attention because of their promising potential in nonvolatile memory devices. The quick switching between binary states is a significant fundamental feature in evaluating Fe-OFET memories. Here, we employ 2D molecular crystals via a solution-based process as the conducting channels in transistor devices, in which ferroelectric polymer acts as the gate dielectric. A high carrier mobility of up to 5.6 cm2 V-1 s-1 and a high on/off ratio of 106 are obtained. In addition, the efficient charge injection by virtue of the ultrathin 2D molecular crystals is beneficial in achieving rapid operations in the Fe-OFETs; devices exhibit short switching time of ∼2.9 and ∼3.0 ms from the on- to the off-state and from the off- to the on-state, respectively. Consequently, the presented strategy is capable of speeding up Fe-OFET memory devices by using solution-processed 2D molecular crystals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.