Abstract

To ensure the safe and punctual transportation of freight trains, it is crucial for the train to travel at the targeted speed on the track. This paper proposes a scheme for speed tracking and anti-slip control for freight trains. The speed tracking is implemented through predictive auto disturbance rejection control (PADRC), which includes a flexible Smith estimation module capable of accurately predicting the output of large time delay systems, such as freight trains. The key to anti-slip control relies on the precise observation of the radial velocity and slip rate. Therefore, an unscented Kalman filter observer is designed in this article, incorporating an adaptive parameter adjustment mechanism to enhance observation accuracy. The anti-slip parameters obtained from this observer can then be used to determine the anti-slip control scheme. The effectiveness of this scheme is demonstrated through simulations of the HXD1 electric traction locomotive’s driving process, using line data from the Geku line section in China. Compared to conventional active disturbance rejection control, PADRC reduces speed fluctuation by 55%, and freight trains under anti-slip control decrease the slip speed by 90%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.