Abstract

SUMMARYThis work presents a new high performance open‐source numerical code, namely SPectral Elements in Elastodynamics with Discontinuous Galerkin, to approach seismic wave propagation analysis in visco‐elastic heterogeneous three‐dimensional media on both local and regional scale. Based on non‐conforming high‐order techniques, such as the discontinuous Galerkin spectral approximation, along with efficient and scalable algorithms, the code allows one to deal with a non‐uniform polynomial degree distribution as well as a locally varying mesh size. Validation benchmarks are illustrated to check the accuracy, stability, and performance features of the parallel kernel, whereas illustrative examples are discussed to highlight the engineering applications of the method. The proposed method turns out to be particularly useful for a variety of earthquake engineering problems, such as modeling of dynamic soil structure and site‐city interaction effects, where accounting for multiscale wave propagation phenomena as well as sharp discontinuities in mechanical properties of the media is crucial. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.