Abstract

In this article, a new design of the state observer is proposed to reduce the unstable low-speed region of the adaptive full-order observer (AFO) based speed sensorless speed control of induction motors (IM). The proposed state observer is designed in z-domain rather than in s-domain following the pole-placement approach. The convergence rate of the proposed observer can be made faster than that of the IM poles without extra oscillation effects and the unstable low-speed region of AFO can be reduced to the zero-synchronous-frequency (ZSF) line. Also, a modified adaptation law of the AFO is derived to estimate the rotor speed. Based on the modified AFO, a continuous control set model predictive control (CCS-MPC) is designed for the inner-loop torque control. The cost function of the CCS-MPC is made of the predicted tracking errors on the state and control input. Finally, the dual-loop speed sensorless speed control using the modified AFO and CCS-MPC is presented in simulations and experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call