Abstract

This article presents a new method to extract accurate rotor position for the speed sensorless control of surface-mounted permanent-magnet synchronous motors (SPMSMs), based on the back electromotive force (EMF) information. The concept of finite control set-model predictive control is employed, and its cost function is related to the back EMF. An optimal voltage vector is selected from several given voltage vectors by comparing their fitness values. Moreover, the position space is divided into four sectors, and the fitness of each sector boundary is calculated and compared. The rotor position is first located in the sector surrounded by two boundaries that minimize the cost function. Then the selected sector is split into two parts, and the binary search algorithm is applied to reduce the sector area to improve the accuracy of position estimation. To overcome the drawback of the back EMF-based sensorless scheme, an I-f startup method is employed to accelerate the motor to the desired speed. An experiment has been carried out to compare the performance of the proposed method and the conventional phase-locked loop (PLL) in terms of steady-state and transient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.