Abstract

Speed-sensorless control (SSC) techniques enhance the overall reliability while reducing the cost, and thus become attractive in induction motors (IMs). Simplicity and flexibility are the main features that make phase-locked loop (PLL)- and frequency-locked loop (FLL)-based speed estimation schemes stand out among considerable estimation methods. However, many PLL and FLL schemes exhibit a poor estimation accuracy in the cases of acceleration and deceleration (AaD). Accordingly, an adaptive second-order generalized integrator-FLL (SOGI-FLL)-based scheme is introduced. While, the issue of the estimated speed feedback (ESF) in the adaptive SOGI-FLL scheme remains an obstacle. With the above, a speed estimation scheme that combines the super-twisting algorithm with an FLL (STA-FLL) is proposed for the SSC of IM drives in this paper. In the proposed STA-FLL scheme, an STA-based quadrature signal generator (STA-QSG) is properly designed, in which the ESF is cancelled to further ensure speed estimation. Moreover, a closed-loop flux observer is adopted in the implementation to enhance the proposed STA-FLL scheme in terms of disturbance mitigation. Experimental tests are performed to validate the proposed STA-FLL scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call