Abstract

Electric vehicles (EVs) are the trend for future transportation. The major obstacle is range anxiety due to poor availability of charging stations and long charging time. Solar-powered EVs, which mostly rely on solar energy, are free of charging limitations. However, the range anxiety problem is more severe due to the availability of sun light. For example, shadings of buildings or trees may cause a solar-powered EV to stop halfway in a trip. In this paper, we show that by optimally planning the speed on different road segments and thus balancing energy harvesting and consumption, we can enable a solar-powered EV to successfully reach the destination using the shortest travel time. The speed planning problem is essentially a constrained non-linear programming problem, which is generally difficult to solve. We have identified an optimality property that allows us to compute an optimal speed assignment for a partition of the path; then, a dynamic programming method is developed to efficiently compute the optimal speed assignment for the whole trip with significantly low computation overhead compared to the state-of-the-art non-linear programming solver. To evaluate the usability of the proposed method, we have also developed a solar-powered EV prototype. Experiments show that the predictions by the proposed technique match well with the data collected from the physical EV. Issues on practical implementation are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.