Abstract

The wireless sensor network (WSN) is well known for an enabling technology for the ubiquitous environment such as real-time surveillance system, habitat monitoring, home automation and healthcare applications. However, the WSN featuring wireless communication through air, a resource constraints device and irregular network topology, is threatened by malicious nodes such as eavesdropping, forgery, illegal modification or denial of services. For this reason, security in the WSN is key factor for utilizing the sensor network into the commercial way. There is a series of symmetric cryptography proposed by laboratory or industry for a long time. Among of them, recently proposed HUMMINGBIRD algorithm, motivated by the design of the well-known Enigma machine, is much more suitable to resource constrained devices, including smart card, sensor node and RFID tags in terms of computational complexity and block size. It also provides resistance to the most common attacks such as linear and differential cryptanalysis. In this paper, we implements ultra-lightweight cryptography, HUMMINGBIRD algorithm into the resource constrained device, sensor node as a perfectly customized design of sensor node.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call