Abstract

Two dimensionless fundamental physical constants, the fine structure constant α and the proton-to-electron mass ratio [Formula: see text], are attributed a particular importance from the point of view of nuclear synthesis, formation of heavy elements, planets, and life-supporting structures. Here, we show that a combination of these two constants results in a new dimensionless constant that provides the upper bound for the speed of sound in condensed phases, vu We find that [Formula: see text], where c is the speed of light in vacuum. We support this result by a large set of experimental data and first-principles computations for atomic hydrogen. Our result expands the current understanding of how fundamental constants can impose new bounds on important physical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.