Abstract

Phototransduction reactions in the rhabdomeric photoreceptor are profoundly stochastic due to the small number of participating molecules and small reaction space. The resulting quantum bumps (QBs) vary in their timing (latency), amplitudes and durations, and these variabilities within each cell are not correlated. Using modeling and electrophysiological recordings, we investigated how the QB properties depend on the cascade speed and how they influence signal transfer. Parametric analysis in the model supported by experimental data revealed that faster cascades elicit larger and narrower QBs with faster onsets and smaller variabilities than slower cascades. Latency dispersion was stronger affected by modification of upstream than downstream activation parameters. The variability caused by downstream modifications closely matched the experimental variability. Frequency response modeling showed that corner frequency is a reciprocal function of the characteristic duration of the multiphoton response, which, in turn, is a non-linear function of QB duration and latency dispersion. All QB variabilities contributed noise but only latency dispersion slowed and spread multiphoton responses, lowering the corner frequency. Using the discovered QB correlations, we evaluated transduction noise for dissimilar species and two extreme adaptation states, and compared it to photon noise. The noise emitted by the cascade was non-additive and depended non-linearly on the interaction between the QB duration and the three QB variabilities. Increased QB duration strongly suppressed both noise and corner frequency. This trade-off might be acceptable for nocturnal but not diurnal species because corner frequency is the principal determinant of information capacity. To offset the increase in noise accompanying the QB narrowing during light adaptation and the response-expanding effect of latency dispersion, the cascade accelerates. This explains the widespread evolutionary tendency of diurnal fliers to have fast phototransduction, especially after light adaptation, which thus appears to be a common adaptation to contain stochasticity, improve SNR and expand the bandwidth.

Highlights

  • Photoreceptors recode information from a time series of environmental photons into a continuous amplitude-modulated voltage response and into many streams of synaptic vesicles stimulating the second-order visual neurons [1]

  • In part 1, we investigate the dependencies of individual quantum bumps (QBs) properties on the key events during the cascade

  • In our previous studies of P. americana photoreceptors we discovered that QB latency dispersion is proportional to the mean latency of the photoreceptor and appears to be a major factor restricting the signaling bandwidth [28]

Read more

Summary

Introduction

Photoreceptors recode information from a time series of environmental photons into a continuous amplitude-modulated (graded) voltage response and into many streams of synaptic vesicles stimulating the second-order visual neurons [1]. This work is concerned with the loss of information at the initial stage of light-to-voltage transformation in the rhabdomeric photoreceptor caused by (1) the inherently random photon absorption events that can be described by a Poisson point process, and (2) the stochastic variability in the properties of elementary electrical responses, the quantum bumps (QB). These two sources of noise, correspondingly the extrinsic photon and the intrinsic phototransduction (or transduction) noises, change with light intensity and photoreceptor adaptation state, and represent two main determinants of the overall noise in the graded voltage response. The rate of information transfer by a photoreceptor stimulated with an arbitrary time series of light intensities representing a “pixel” of the visual scene dynamically sampled by the rhabdomere can be estimated using the Shannon’s equation [3]: Zf

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call