Abstract
With the increase in multi-media data over the Internet, query by example spoken term detection (QbE-STD) has become important in providing a search mechanism to find spoken queries in spoken audio. Audio search algorithms should be efficient in terms of speed and memory to handle large audio files. In general, approaches derived from the well known dynamic time warping (DTW) algorithm suffer from scalability problems. To overcome such problems, an Information Retrieval-based DTW (IR-DTW) algorithm has been proposed recently. IR-DTW borrows techniques from Information Retrieval community to detect regions which are more likely to contain the spoken query and then uses a standard DTW to obtain exact start and end times. One drawback of the IR-DTW is the time taken for the retrieval of similar reference points for a given query point. In this paper we propose a method to improve the search performance of IR-DTW algorithm using a clustering based technique. The proposed method has shown an estimated speedup of 2400X.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.