Abstract

This paper presents a new open-loop speed estimation method for a three-phase induction motor drive. The open-loop speed estimators available in literature have the advantage of reduced computational stress over the observers but they share a common limitation of being largely dependent on flux and machine parameters. They involve integrations and differentiation in the algorithm that leads to serious error in estimation when subject to different operating conditions. The proposed estimator is based on synchronous speed tracking and is cost-effective. It is immune to any variation in machine parameters and noise. The synchronous speed is computed from stator frequency which is estimated on-line using the stator current signals. A unique, non-adaptive method for estimation of stator frequency within one-sixteenth of time period is also proposed to enhance the speed of estimation. Computer simulation and experimentation on a 2.2 kW Field oriented controlled induction motor drive is carried out to verify the performance of proposed speed estimator. The results show excellent response over a wide range of rotor speed in both directions including low speed and under different operating conditions. This confirms the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call