Abstract

In this paper, we present a coordinated control system of differential and assisted steering for in-wheel motor driven (IMD) electric vehicles (EVs) with two independent front-wheel drives. An electric differential (ED) control strategy is proposed to track the expected yaw rate based on sliding mode control (SMC). Meanwhile, to realize differential drive assisted steering (DDAS), a variable speed integral PID controller is used to follow the ideal steering wheel torque. The impacts of the coupling with the ED and DDAS systems on EVs are analyzed, and a coordinated control system with adaptive weighting dependent on vehicle speed is designed. Results of the simulation on the CarSim-Simulink joint platform for IMD EVs model show that the proposed coordinated control approach can effectively reduce the torque of a steering wheel while ensuring the vehicle’s stability. Finally, road testing results of IMD EVs are demonstrated to be comparable with joint simulations, indicating the correctness of this solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.