Abstract

Abstract This paper deals with the speed control of switched reluctance motor (SRM) drives taking into account the effects of the mutual inductances between two adjacent phases and the effects of the magnetic saturation of the core. To overcome the problems commonly associated with single-phase excitation, a nonlinear SRM model, which is suitable for two-phase excitation and which takes into account the effects of mutual inductances between two adjacent phases and the magnetic saturation effects, is considered in the design of the proposed controllers. A feedback linearization control scheme and a sliding mode control scheme are designed for this motor drive. The proposed controllers guarantee the convergence of the phase currents and the rotor speed of the motor to their desired values. Simulation results indicate that the proposed controllers work well and that they are robust to changes in the parameters of the system and to changes in the load torque.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.