Abstract

Permanent‐magnet synchronous motor (PMSM) is a nonlinear, multivariate, strongly coupled system with uncertain external interference. A general control method cannot meet system requirements. This study proposes an optimal control strategy based on active disturbance rejection control (ADRC) to achieve high‐precision control of PMSM. First, interpolation fitting is used to construct a nonlinear function with improved continuity and derivative near the origin and segment points. Second, various components of active disturbance rejection control are constructed based on the new nonlinear function, which mainly improves the extended state observer and nonlinear state error feedback. Simulation results show that under similar parameters, the improved active disturbance rejection control has smaller overshoot, faster tracking capacity, and stronger anti‐interference capability compared with traditional active disturbance rejection control. Finally, the optimized active disturbance rejection control is used in the motion control system of PMSM. Experimental results show that the proposed optimal control strategy is simple and has good control performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.