Abstract

The control of electrical vehicles (EVs) should be designed robustly and adaptively to improve the system on both dynamic and steady-state performances, because EV systems are basically time variant (e.g. the operation parameters of EV and the road condition are always varying) that make the operation of controlling an EV difficult. In this study, general type-2 fuzzy logic sets and the modified harmony search algorithm techniques for adaptive tuning of the most popular existing proportional–integral (PI) controller is integrated in order to address these uncertainties. Although it is computationally expensive to carry out general type-2 fuzzy systems, it can be examined as a composition of several interval type-2 fuzzy logic systems with a corresponding level of α for each by using a new plan which is presented, general type-2 fuzzy set. The controller uses the linguistic rules directly. The achieved results are compared with optimal fuzzy-PI controller and optimal interval type-2 fuzzy-PI controller results which are the most recent researches into in the present issue to evaluate the proficiency of the proposed controller. The simulation results demonstrate the successfulness and effectiveness of the proposed controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.