Abstract

Increasing the methods of order calculus for Fractional Order Proportional Integral Derivative (FOPID) controller leads to a wide applications for this type of controller in control systems. A closed loop speed control for BrushLess Direct Current (BLDC) motor with FOPID controller runs the motor very close to the reference speed, provides a good performance and robustness compared with a corresponding system using conventional PID controller. In this paper, the BLDC motor is modeled and simulated in Matlab/Simulink for speed control strategy. A DC link speed control strategy is proposed and implemented. The FOPID speed controller parameters (Kp, ki, kd, λ ) are optimized by genetic evolutionary programming module. The effectiveness of the proposed speed control is verified through simulation. The control system is extra tested under a conditions of some motor parameters perturbations. The simulation results reveal a flexible and stable control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call