Abstract

A variable-speed predictive torque control (PTC) of a six-phase induction machine (SPIM) fed by a multi-modular matrix converter (M-MMC) is presented in this paper. This new system inherits the advantages of both multiphase machines (i.e., inherent fault-tolerance and better distribution of the power/current per phase compared to three-phase machines) and the M-MMC (i.e., smaller size and weight, and has no bulky storage elements). In addition, with the M-MMC topology, it is possible to use two power generation sources of different characteristics instead of a single three-phase source. This article proposes a method that reduces the number of calculations significantly compared to conventional PTC to overcome this issue. Simulation and experimental results are provided for speed control, module failure performance and tolerance to the variation of the magnetization inductance of the SPIM. An experimental test bench on a customized SiC-Mosfets based M-MMC and a 5.5 kW symmetrical SPIM has been used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call