Abstract

Describes the design and experimental evaluation of a nonlinear automotive speed control system. The approach implemented is based on interpolation of multiple linear controllers designed using multiple local linear models. This is a generalized form of gain scheduling since the models and controllers take explicit account of both stationary and nonstationary (off-equilibrium) operating points. The paper focuses on engineering aspects and experimental evaluation in a test vehicle. The nonlinear controller is tested on a range of speed-profile tracking tasks, and in a disturbance rejection task (the vehicle is driven up a 10% slope). For comparison, linear controllers are implemented. The proposed nonlinear control approach gives excellent performance over the complete operational range. The nonlinear controller can directly account for the strong plant nonlinearities and the engineering constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.