Abstract

The discovery of higher-order epistatic interactions is an important task in the field of genome wide association studies which allows for the identification of complex interaction patterns between multiple genetic markers. Some existing bruteforce approaches explore the whole space of k-interactions in an exhaustive manner resulting in almost intractable execution times. Computational cost can be reduced drastically by restricting the search space with suitable preprocessing filters which prune unpromising candidates. Other approaches mitigate the execution time by employing massively parallel accelerators in order to benefit from the vast computational resources of these architectures. In this paper, we combine a novel preprocessing filter, namely SingleMI, with massively parallel computation on modern GPUs to further accelerate epistasis discovery. Our implementation improves both the runtime and accuracy when compared to a previous GPU counterpart that employs mutual information clustering for prefiltering. SingleMI is open source software and publicly available at: https://github.com/sleeepyjack/singlemi/ .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call