Abstract

Perceptual decision making has been successfully modeled as a process of evidence accumulation up to a threshold. In order to maximize the rewards earned for correct responses in tasks with response deadlines, participants should collapse decision thresholds dynamically during each trial so that a decision is reached before the deadline. This strategy ensures on-time responding, though at the cost of reduced accuracy, since slower decisions are based on lower thresholds and less net evidence later in a trial (compared to a constant threshold). Frazier and Yu (2008) showed that the normative rate of threshold reduction depends on deadline delays and on participants' uncertainty about these delays. Participants should start collapsing decision thresholds earlier when making decisions under shorter deadlines (for a given level of timing uncertainty) or when timing uncertainty is higher (for a given deadline). We tested these predictions using human participants in a random dot motion discrimination task. Each participant was tested in free-response, short deadline (800 ms), and long deadline conditions (1000 ms). Contrary to optimal-performance predictions, the resulting empirical function relating accuracy to response time (RT) in deadline conditions did not decline to chance level near the deadline; nor did the slight decline we typically observed relate to measures of endogenous timing uncertainty. Further, although this function did decline slightly with increasing RT, the decline was explainable by the best-fitting parameterization of Ratcliff's diffusion model (Ratcliff, 1978), whose parameters are constant within trials. Our findings suggest that at the very least, typical decision durations are too short for participants to adapt decision parameters within trials.

Highlights

  • Noisy evidence accumulation models such as the drift-diffusion model (DDM, Ratcliff, 1978, 1981, 1985, 1988, 2002) have successfully explained accuracy and response time (RT) patterns in two-alternative forced choice (2AFC) perceptual decision tasks

  • ACCURACY AND RESPONSE TIME IN THE FREE RESPONSE CONDITIONS The data from the two Free Response (FR) sessions showed that the participants’ error rates declined from a mean of 10% in the first 4 blocks of the first FR session, to a mean of 4.3% in the last 4 blocks of the second FR session [t(9) = 3.1, p < 0.05; Figure 6] suggesting that the FR sessions were successful in training the participants on the Random Dot Motion (RDM) discrimination task

  • A mean of 844.85 (s.e.m. = 20.1) trials were completed in FR blocks in FR sessions, whereas this number was 105.2 (s.e.m. = 1.24) in FR blocks in Deadlined Response (DR) sessions, 433.88 (s.e.m. = 2.27) in Short Deadline blocks in DR sessions, and 432.48 (s.e.m. = 2.82) in Long Deadline blocks in DR sessions

Read more

Summary

Introduction

Noisy evidence accumulation models such as the drift-diffusion model (DDM, Ratcliff, 1978, 1981, 1985, 1988, 2002) have successfully explained accuracy and RT patterns in two-alternative forced choice (2AFC) perceptual decision tasks. If the signal quality is very high, little evidence needs to be accumulated to achieve high accuracy; if there is no signal in the environment (necessarily yielding an error rate around 0.5), the decision maker should accumulate little or no evidence before making a choice. In this way, the participant can maximize the number of decisions made (trials generated) in a fixed amount of test duration. Note that the OPC for 2AFC tasks was defined based on the assumptions of the reduced DDM analyzed by Bogacz et al (2006), which lacks the between-trial variability of the core parameters found in Ratcliff ’s DDM

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call