Abstract
Speech understanding, while effortless in quiet conditions, is challenging in noisy environments. Previous studies have revealed that a feasible approach to supplement speech-in-noise (SiN) perception consists in presenting speech-derived signals as haptic input. In the current study, we investigated whether the presentation of a vibrotactile signal derived from the speech temporal envelope can improve SiN intelligibility in a multi-talker background for untrained, normal-hearing listeners. We also determined if vibrotactile sensitivity, evaluated using vibrotactile detection thresholds, modulates the extent of audio-tactile SiN improvement. In practice, we measured participants’ speech recognition in a multi-talker noise without (audio-only) and with (audio-tactile) concurrent vibrotactile stimulation delivered in three schemes: to the left or right palm, or to both. Averaged across the three stimulation delivery schemes, the vibrotactile stimulation led to a significant improvement of 0.41 dB in SiN recognition when compared to the audio-only condition. Notably, there were no significant differences observed between the improvements in these delivery schemes. In addition, audio-tactile SiN benefit was significantly predicted by participants’ vibrotactile threshold levels and unimodal (audio-only) SiN performance. The extent of the improvement afforded by speech-envelope-derived vibrotactile stimulation was in line with previously uncovered vibrotactile enhancements of SiN perception in untrained listeners with no known hearing impairment. Overall, these results highlight the potential of concurrent vibrotactile stimulation to improve SiN recognition, especially in individuals with poor SiN perception abilities, and tentatively more so with increasing tactile sensitivity. Moreover, they lend support to the multimodal accounts of speech perception and research on tactile speech aid devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.