Abstract

The outcome of cochlear implantation is typically assessed by speech recognition tests in quiet and in noise. Many cochlear implant recipients reveal satisfactory speech recognition especially in quiet situations. However, since cochlear implants provide only limited spectro-temporal cues the effort associated with understanding speech might be increased. In this respect, measures of listening effort could give important extra information regarding the outcome of cochlear implantation. In order to shed light on this topic and to gain knowledge for clinical applications we compared speech recognition and listening effort in cochlear implants (CI) recipients and age-matched normal-hearing listeners while considering potential influential factors, such as cognitive abilities. Importantly, we estimated speech recognition functions for both listener groups and compared listening effort at similar performance level. Therefore, a subjective listening effort test (adaptive scaling, “ACALES”) as well as an objective test (dual-task paradigm) were applied and compared. Regarding speech recognition CI users needed about 4 dB better signal-to-noise ratio to reach the same performance level of 50% as NH listeners and even 5 dB better SNR to reach 80% speech recognition revealing shallower psychometric functions in the CI listeners. However, when targeting a fixed speech intelligibility of 50 and 80%, respectively, CI users and normal hearing listeners did not differ significantly in terms of listening effort. This applied for both the subjective and the objective estimation. Outcome for subjective and objective listening effort was not correlated with each other nor with age or cognitive abilities of the listeners. This study did not give evidence that CI users and NH listeners differ in terms of listening effort – at least when the same performance level is considered. In contrast, both listener groups showed large inter-individual differences in effort determined with the subjective scaling and the objective dual-task. Potential clinical implications of how to assess listening effort as an outcome measure for hearing rehabilitation are discussed.

Highlights

  • Cochlear implants (CI) have been established as the treatment of severe to profound hearing loss in both children and adults with hearing impairment

  • Speech recognition was clearly better for the NH than the cochlear implants (CI) listeners

  • A repeated measures analyses of variance (rmANOVA) on signal-to-noise ratios (SNRs) with target speech recognition (50%, 80%) as within-subjects variable and listener group (CI, NH) as between-subjects variable revealed a significant main effect of target speech recognition (F1,26 = 338.96, p < 0.001, ηp2 = 0.93), a significant main effect of group (F1,26 = 49.52, p < 0.001, ηp2 = 0.66) and a speech recognition by group interaction (F1,26 = 23.65, p < 0.001, ηp2 = 0.48)

Read more

Summary

Introduction

Cochlear implants (CI) have been established as the treatment of severe to profound hearing loss in both children and adults with hearing impairment. In comparison to healthy hearing, sounds transmitted via CIs are largely limited especially in terms of spectro-temporal cues. CIs allow open speech understanding in many patients at least in favorable surroundings (Clark, 2015). The functional outcome of cochlear implantation is determined by a number of measurements. In this respect, speech audiometry plays an outstanding role since it directly addresses verbal communication. Speech audiometry is typically assessed both in quiet and against background noise considering different speech materials such as phonemes, single words or sentences giving comprehensive information on speech recognition abilities (Boisvert et al, 2020)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call