Abstract

A speech pause detection algorithm is an important and sensitive part of most single-microphone noise reduction schemes for enhancement of speech signals corrupted by additive noise as an estimate of the background noise is usually determined when speech is absent. An algorithm is proposed which detects speech pauses by adaptively tracking minima in a noisy signal's power envelope both for the broadband signal and for the high-pass and low-pass filtered signal. In poor signal-to-noise ratios (SNRs), the proposed algorithm maintains a low false-alarm rate in the detection of speech pauses while the standardized algorithm of ITU G.729 shows an increasing false-alarm rate in unfavorable situations. These characteristics are found with different types of noise and indicate that the proposed algorithm is better suited to be used for noise estimation in noise reduction algorithms, as speech deterioration may thus be kept at a low level. It is shown that in connection with the Ephraim-Malah (1984) noise reduction scheme, the speech pause detection performance can even be further increased by using the noise-reduced signal instead of the noisy signal as input for the speech pause decision unit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call