Abstract

The wavelet transform possesses multi-resolution property and high localization performance; hence, it can be optimized for speech recognition. In our previous work, we show that redundant wavelet filter bank parameters work better in speech recognition task, because they are much less shift sensitive than those of critically sampled discrete wavelet transform (DWT). In this paper, three types of wavelet representations are introduced, including features based on dual-tree complex wavelet transform (DT-CWT), perceptual dual-tree complex wavelet transform, and four-channel double-density discrete wavelet transform (FCDDDWT). Then, appropriate filter values for DT-CWT and FCDDDWT are proposed. The performances of the proposed wavelet representations are compared in a phoneme recognition task using special form of the time-delay neural networks. Performance evaluations confirm that dual-tree complex wavelet filter banks outperform conventional DWT in speech recognition systems. The proposed perceptual dual-tree complex wavelet filter bank results in up to approximately 9.82 % recognition rate increase, compared to the critically sampled two-channel wavelet filter bank.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.