Abstract

The Conformer has shown impressive performance for speech enhancement by exploiting the local and global contextual information, although it requires high computational complexity and many parameters. Recently, multi-layer perceptron (MLP)-based models such as MLP-mixer and gMLP have demonstrated comparable performances with much less computational complexity in the computer vision area. These models showed that all-MLP architectures may perform as good as more advanced structures, but the nature of the MLP limits the application of these architectures to the input with a variable length such as speech and audio. In this paper, we propose the cgMLP-SE model, which is a gMLP-based architecture with convolutional token mixing modules and squeeze-and-excitation network (SENet) to utilize both local and global contextual information as in the Conformer. Specifically, the token-mixing modules in gMLP are replaced by convolutional layers, SENet-based gating is applied on top of the convolutional gating module, and additional feed-forward layers are added to make the cgMLP-SE module a macaron-like structure sandwiched by feed-forward layers like a Conformer block. Experimental results on the TIMIT-DNS noise dataset and the Voice Bank-DEMAND dataset showed that the proposed method exhibited similar speech quality and intelligibility to the Conformer with a smaller model size and less computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.