Abstract

Clear and effective communication is crucial for the safe operation of aircraft. In helicopters, high levels of noise are generated by the engine, gears, and aerodynamics, which negatively impact speech intelligibility. To address this issue, modern aircraft headsets utilize active noise control (ANC) to reduce noise levels for both the crew and passengers. However, the speech signals captured by these headsets often contain high levels of background noise, thereby hindering internal and external flight communication. This paper introduces a dual microphone dual stage speech enhancement algorithm that combines basic spectral subtraction with a Wiener Filter, enhanced by the a priori and a posteriori signal-to-noise ratio. Audio data from within a helicopter cabin were recorded during a test flight. In a series of simulations, the Wiener Filter implementation is compared to other algorithms based only on spectral subtraction methods. The results are evaluated using established performance measures for speech quality. The Wiener Filter implementation results in the highest speech quality and is, therefore, implemented on an FPGA-platform for validation in a laboratory experiment. The simulations and measurements demonstrate significant improvements in speech quality and, consequently, enhance speech intelligibility using the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.