Abstract

One of the obstacles in developing speech emotion recognition (SER) systems is the data scarcity problem, i.e., the lack of labeled data for training these systems. Data augmentation is an effective method for increasing the amount of training data. In this paper, we propose a cycle-generative adversarial network (cycle-GAN) for data augmentation in the SER systems. For each of the five emotions considered, an adversarial network is designed to generate data that have a similar distribution to the main data in that class but have a different distribution to those of other classes. These networks are trained in an adversarial way to produce feature vectors similar to those in the training set, which are then added to the original training sets. Instead of using the common cross-entropy loss to train cycle-GANs, we use the Wasserstein divergence to mitigate the gradient vanishing problem and to generate high-quality samples. The proposed network has been applied to SER using the EMO-DB dataset. The quality of the generated data is evaluated using two classifiers based on support vector machine and deep neural network. The results showed that the recognition accuracy in unweighted average recall was about 83.33%, which is better than the baseline methods compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.