Abstract
Recognizing the sense of speech is one of the most active research topics in speech processing and in human-computer interaction programs. Despite a wide range of studies in this scope, there is still a long gap among the natural feelings of humans and the perception of the computer. In general, a sensory recognition system from speech can be divided into three main sections: attribute extraction, feature selection, and classification. In this paper, features of fundamental frequency (FEZ) (F0), energy (E), zero-crossing rate (ZCR), fourier parameter (FP), and various combinations of them are extracted from the data vector, Then, the principal component analysis (PCA) algorithm is used to reduce the number of features. To evaluate the system performance. The fusion of each emotional state will be performed later using support vector machine (SVM), K-nearest neighbor (KNN), In terms of comparison, similar experiments have been performed on the emotional speech of the German language, English language, and significant results were obtained by these comparisons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.