Abstract
Background and objectiveThe acoustic analysis, an objective evaluation method, is used to determine the descriptive attributes of the voices. Although there are many tools available in the literature for acoustic analysis, these tools are separated by features such as ease of use, visual interface, and acoustic parameter library. In this work, we have developed a new toolbox named SPAC for extracting and simulating attributes from speech files. MethodsSPAC has a modular structure and user-friendly interface, which will make up for the shortcomings of existing vehicles. In addition, modules can be used independently of each other. With SPAC, about 723 attributes can be extracted from each voice file in 9 categories. A validation test was applied to verify the validity of the toolbox-derived attributes. When the validation test was performed, the attributes obtained with Praat and OpenSMILE were grouped as standard, the attributes obtained with SPAC as test data, and the general differences between the attributes were evaluated with mean square error and mean percentage error. In another method used for verification, the classification performance is tested using the SPAC-derived attributes for classification. ResultsAccording to the validation test results, SPAC attributes differ between 0.2% and 9.7% compared to other toolboxes. According to the results of the classification test, the SPAC attribute clusters can identify each class and the classification success varies between 1% and 3% according to the attributes obtained from other toolboxes. As a result, the attributes obtained with SPAC accurately describe the voice data. ConclusionsSPAC's superiority over existing toolboxes is that it has an easy-to-use user-friendly interface, it is modular, allows graphical representation of results, includes classification module and allows to work with SPAC data or data obtained from different toolboxes. In addition, operations performed with other tools can be performed more easily with SPAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.