Abstract

Automatic parallelization is a promising strategy to improve application performance in the multicore era. However, common programming practices such as the reuse of data structures introduce artificial constraints that obstruct automatic parallelization. Privatization relieves these constraints by replicating data structures, thus enabling scalable parallelization. Prior privatization schemes are limited to arrays and scalar variables because they are sensitive to the layout of dynamic data structures. This work presents Privateer, the first fully automatic privatization system to handle dynamic and recursive data structures, even in languages with unrestricted pointers. To reduce sensitivity to memory layout, Privateer speculatively separates memory objects. Privateer's lightweight runtime system validates speculative separation and speculative privatization to ensure correct parallel execution. Privateer enables automatic parallelization of general-purpose C/C++ applications, yielding a geomean whole-program speedup of 11.4x over best sequential execution on 24 cores, while non-speculative parallelization yields only 0.93x.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.