Abstract
We propose a universal method to detect the specular Andreev reflection taking the simple two dimensional Weyl nodal-line semimetal-superconductor double-junction structure as an example. The quasiclassical quantization conditions are established for the energy levels of bound states formed in the middle semimetal along a closed path. The establishment of the conditions is completely based on the intrinsic character of the specularly reflected hole which has the same sign relation of its wave vector and group velocity with the incident electron. This brings about the periodic oscillation of conductance with the length of the middle semimetal, which is lack for the retro-Andreev reflected hole having the opposite sign relation with the incident electron. The positions of the conductance peaks and the oscillation period can be precisely predicted by the quantization conditions. Our detection method is irrespective of the details of the materials, which may promote the experimental detection of and further researches on the specular Andreev reflection as well as its applications in superconducting electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.