Abstract

We consider a class of spatially partially coherent light beams, which are generated by passing a Gaussian Schell-model beam though a wavefront-folding interferometer. In certain cases these beams are shape-invariant on propagation and can exhibit sharp internal structure with a central peak (specular beam) or a central dip (antispecular beam) whose dimensions depend on the spatial coherence area. Such beams are demonstrated experimentally and their cross-like distributions of the complex degree of spatial coherence are measured with a digital micromirror device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call