Abstract
The spectrum situation awareness problem in space-air-ground integrated networks (SAGINs) is studied from a tensor-computing perspective. Tensor and tensor computing, including tensor decomposition, tensor completion and tensor eigenvalues, can satisfy the application requirements of SAGINs. Tensors can effectively handle multidimensional heterogeneous big data generated by SAGINs. Tensor computing is used to process the big data, with tensor decomposition being used for dimensionality reduction to reduce storage space, and tensor completion utilized for numeric supplementation to overcome the missing data problem. Notably, tensor eigenvalues are used to indicate the intrinsic correlations within the big data. A tensor data model is designed for space-air-ground integrated networks from multiple dimensions. Based on the multidimensional tensor data model, a novel tensor-computing-based spectrum situation awareness scheme is proposed. Two tensor eigenvalue calculation algorithms are studied to generate tensor eigenvalues. The distribution characteristics of tensor eigenvalues are used to design spectrum sensing schemes with hypothesis tests. The main advantage of this algorithm based on tensor eigenvalue distributions is that the statistics of spectrum situation awareness can be completely characterized by tensor eigenvalues. The feasibility of spectrum situation awareness based on tensor eigenvalues is evaluated by simulation results. The new application paradigm of tensor eigenvalue provides a novel direction for practical applications of tensor theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.