Abstract

Covariance-based detection is a low-complexity blind spectrum sensing scheme that exploits spatial and/or temporal correlations of primary signals. However, its performance severely degrades with the decrease of signal correlations. In this work, a weighted-covariance-based detector is proposed by introducing data-aided weights to the covariance matrix. The false alarm probability, decision threshold, and detection probability are analyzed in the low signal-to-noise ratio (SNR) regime, and their approximate analytical expressions are derived based on the central limit theorem. The analyses are verified through simulations. Experiments with simulated multiple-antenna signals and field measurement digital television signals show that the proposed weighted detection can significantly outperform the original covariance-based detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.