Abstract

Ikaros (now known as Znfn1a1), a Krüppel-type zinc-finger transcription factor that plays a critical role in both lineage commitment and differentiation of lymphoid cells, has recently been shown to function as a tumor suppressor gene. We have previously reported a high frequency of LOH (approximately 50%) at the Znfn1a1 locus in radiation-induced T-cell lymphoma in susceptible B6C3F1 mice. The aim of the present study was to delineate the types of Znfn1a1 inactivation, with special reference to the LOH status, and to determine the relative contribution of each type of Znfn1a1 inactivation in radiation-induced T-cell lymphomas in B6C3F1 mice. We demonstrated that Znfn1a1 was frequently altered (in approximately 50% of T-cell lymphomas), and that its inactivation was caused by a variety of mechanisms, which came under one of the following four categories: (1) null expression (14%); (2) expression of unusual dominant-negative isoforms (11%); (3) amino acid substitutions in the N-terminal zinc-finger domain for DNA binding caused by point mutations (22%); (4) lack of the Znfn1a1 isoform 1 due to the creation of a stop codon by insertion of a dinucleotide in exon 3 (3%). The null expression, amino acid substitutions, and dinucleotide insertion inactivation types were well correlated with LOH at the Znfn1a1 allele (86%) and were consistent with Knudson's two-hit theory. On the other hand, T-cell lymphomas expressing dominant-negative Znfn1a1 isoforms retained both alleles. These results indicate that Znfn1a1 inactivation takes place by a variety of mechanisms in radiation-induced murine T-cell lymphomas and is frequently associated with LOH, this association depending on the type of inactivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.