Abstract
We study the spectral properties of the unresolved cosmic X-ray background (CXRB) in the 1.5-7.0 keV energy band with the aim of providing an observational constraint on the statistical properties of those sources that are too faint to be individually probed. We made use of the Swift X-ray observation of the Chandra Deep Field South complemented by the Chandra data. Exploiting the lowest instrument background (Swift) together with the deepest observation ever performed (Chandra) we measured the unresolved emission at the deepest level and with the best accuracy available today. We find that the unresolved CXRB emission can be modeled by a single power law with a very hard photon index Gamma=0.1+/-0.7 and a flux of 5(+/-3)E-12 cgs in the 2.0-10 keV energy band (1 sigma error). Thanks to the low instrument background of the Swift-XRT, we significantly improved the accuracy with respect to previous measurements. These results point towards a novel ingredient in AGN population synthesis models, namely a positive evolution of the Compton-thick AGN population from local Universe to high redshift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.