Abstract

We estimate the frequency spectrum of the diffuse anomalous microwave emission (AME) on the North Celestial Pole (NCP) region of the sky with the Correlated Component Analysis (CCA) component separation method applied toWMAP7-yr data. The NCP is a suitable region for this analysis because the AME is weakly contaminated by synchrotron and free-free emission. By modeling the AME component as a peaked spectrum we estimate the peak frequency to be21.7±0.8 GHz, in agreement with previous analyses which favoredνp< 23 GHz. The ability of our method to correctly recover the position of the peak is verified through simulations. We compare the estimated AME spectrum with theoretical spinning dust models to constrain the hydrogen densitynH. The best results are obtained with densities around 0.2–0.3 cm−3, typical of warm ionised medium (WIM) to warm neutral medium (WNM) conditions. The degeneracy with the gas temperature prevents an accurate determination ofnH, especially for low hydrogen ionization fractions, where densities of a few cm−3are also allowed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.