Abstract

We introduce the signless 1-Laplacian and the dual Cheeger constant on simplicial complexes. The connection of its spectrum to the combinatorial properties like independence number, chromatic number and dual Cheeger constant is investigated. Our estimates can be comparable to Hoffman's bounds on Laplacian eigenvalues of simplicial complexes. An interesting inequality involving multiplicity of the largest eigenvalue, independence number and chromatic number is provided, which could be regarded as a variant version of Lovász sandwich theorem. Also, the behavior of 1-Laplacian under the topological operations of wedge and duplication of motifs is studied. The Courant nodal domain theorem in spectral theory is extended to the setting of signless 1-Laplacian on complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.