Abstract

Motivated by extremal problems of weighted Dirichlet or Neumann eigenvalues, we will establish two fundamental results on the dependence of weighted eigenvalues of the one-dimensional p-Laplacian on indefinite integrable weights. One is the continuous differentiability of eigenvalues in weights in the Lebesgue spaces Lγ with the usual norms. Another is the continuity of eigenvalues in weights with respect to the weak topologies in Lγ spaces. Here 1 ≤ γ ≤ ∞. In doing so, we will give a simpler explanation to the corresponding spectrum problems, with the help of several typical techniques in nonlinear analysis such as the Frechet derivative and weak* convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.