Abstract
The hydroelastic vibrations of the ice surface of the ocean of Europa, a natural satellite of Jupiter, are investigated, and the natural spectrum of frequencies of this surface is determined. The mathematical model of the mechanical system under consideration is presented in the form of a spherical shell, which is wetted by a spherical layer of liquid enveloping a rigid spherical core. The solution of the boundary value problems of the theory of elasticity is sought in the form of expansions into series of the associated Legendre polynomials. It is noted that there are at least three tones of natural vibrations of the “shell–spherical liquid layer” system, whose periods lie in the vicinity of the ten-hour period of Jupiter's rotation about its axis, and variations of the magnetic field of Europa with the same period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.