Abstract

<p>We investigate the spectral properties of the turbulence in the solar wind which is a weakly collisional astrophysical plasma, accessible by in-situ observations. Using the Helios search coil magnetometer measurements in the fast solar wind, in the inner heliosphere, we focus on properties of the turbulent magnetic fluctuations at scales smaller than the ion characteristic scales, the so-called kinetic plasma turbulence. At such small scales, we show that the magnetic power spectra between 0.3 and 0.9 AU from the Sun have a generic shape ~f<sup>-8/3</sup>exp(-f/f<sub>d</sub>) where the dissipation frequency f<sub>d</sub> is correlated with the Doppler shifted frequency f<sub>ρe</sub> of the electron Larmor radius. This behavior is statistically significant: all the observed kinetic spectra are well described by this model, with f<sub>d</sub>=f<sub>ρe</sub>/1.8. These results provide important constraints on the dissipation mechanism in nearly collisionless space plasmas.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.