Abstract
Energy injection into the early universe can induce turbulent motions of the primordial plasma, which in turn act as a source for gravitational radiation. Earlier work computed the amplitude and characteristic frequency of the relic gravitational wave background, as a function of the total energy injected and the stirring scale of the turbulence. This paper computes the frequency spectrum of relic gravitational radiation from a turbulent source of the stationary Kolmogoroff form which acts for a given duration, making no other approximations. We also show that the limit of long source wavelengths, commonly employed in aeroacoustic problems, is an excellent approximation. The gravitational waves from cosmological turbulence around the electroweak energy scale will be detectable by future space-based laser interferometers for a substantial range of turbulence parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.