Abstract

Faddeev formulation of general relativity (GR) is considered where the metric is composed of ten vector fields or a ten-dimensional tetrad. Upon partial use of the field equations, this theory results in the usual general relativity (GR). Earlier, we have proposed first-order representation of the minisuperspace model for the Faddeev formulation where the tetrad fields are piecewise constant on the polytopes like four-simplices or, say, cuboids into which [Formula: see text] can be decomposed, an analogue of the Cartan–Weyl connection-type form of the Hilbert–Einstein action in the usual continuum GR. In the Hamiltonian formalism, the tetrad bilinears are canonically conjugate to the orthogonal connection matrices. We evaluate the spectrum of the elementary areas, functions of the tetrad bilinears. The spectrum is discrete and proportional to the Faddeev analog [Formula: see text] of the Barbero–Immirzi parameter [Formula: see text]. The possibility of the tetrad and metric discontinuities in the Faddeev gravity allows to consider any surface as consisting of a set of virtually independent elementary areas and its spectrum being the sum of the elementary spectra. Requiring consistency of the black hole entropy calculations known in the literature we are able to estimate [Formula: see text].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.