Abstract

Abstract The widespread application of AI with high computing requirements has driven the rapid development of the computing field. Computing Power Networks (CPNs) have been recognized as solutions to providing on-demand computing services, and its service provisioning can be modeled as a network slicing deployment problem. Elastic Optical Networks (EONs) offer the flexibility to allocate spectrum resources, making them well-suited for network slicing technology. Consequently, EON-based CPNs have attracted considerable attention. However, the unbalanced distribution of computing resources leads to inefficient computing resource utilization. Meanwhile, spectrum resources may be isolated and difficult for other services. This phenomenon is known as spectrum fragmentation, leading to inefficient spectrum resource utilization. To achieve balanced and efficient resource utilization, this paper first analyzes the main reasons for load unbalance and spectrum fragmentation in CPNs: mismatched slicing deployment and inappropriate resource scheduling. Therefore, a dynamic network slicing scheme based on traffic prediction (DNS-TP) is designed. Its core highlight is cooperative optimization slicing deployment and resource scheduling based on spectrum fragmentation awareness. Simulation results show that the proposed scheme enhances the network slicing acceptance ratio, computing and spectrum resource utilization while exhibiting strong performance in resource balancing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call