Abstract
Diagnostic tests must be evaluated in a clinically relevant population. However, test performance often varies across population subgroups. Spectrum bias, a term commonly used to describe this heterogeneity, is typically thought to occur when diagnostic test performance varies across patient subgroups and a study of that test's performance does not adequately represent all subgroups. Yet subgroup variation is not a bias if appropriate analyses are conducted. Failure to recognize and address heterogeneity will lead to estimates of test performance that are not generalizable to the relevant clinical populations. Heterogeneity can be addressed with relatively simple stratification procedures, limited primarily by the sample size and the precision of the estimates. This paper proposes the use of the term spectrum effect, rather than spectrum bias, and outlines strategies for using stratified sensitivity and specificity estimates, likelihood ratios, and receiver-operating characteristic curves. Investigators of diagnostic tests should consider the potential for spectrum effect seriously and should address heterogeneity in their analyses. Furthermore, clinicians should consider study samples carefully to determine whether results are generalizable to their specific patient population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.