Abstract

We present a spectrum-based, sequential software debugging approach coined Sequoia, that greedily selects tests out of a suite of tests to narrow down the set of diagnostic candidates with a minimum number of tests. Sequoia handles multiple faults, that can be intermittent, at polynomial time and space complexity, due to a novel, approximate diagnostic entropy estimation approach, which considers the subset of diagnoses that cover almost all Bayesian posterior probability mass. Synthetic experiments show that Sequoia achieves much better diagnostic uncertainty reduction compared to random test sequencing.Real programs, taken from the Software Infrastructure Repository, confirm Sequoia's better performance, with a test reduction up to 80% compared to random test sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.