Abstract

This article is concerned with spectro-temporal (i.e., time varying spectrum) analysis of ECG signals for application in atrial fibrillation (AF) detection. We propose a Bayesian spectro-temporal representation of ECG signal using state-space model and Kalman filter. The 2D spectro-temporal data are then classified by a densely connected convolutional networks (DenseNet) into four different classes: AF, non-AF normal rhythms (Normal), non-AF abnormal rhythms (Others), and noisy segments (Noisy). The performance of the proposed algorithm is evaluated and scored with the PhysioNet/Computing in Cardiology (CinC) 2017 dataset. The experiment results shows that the proposed method achieves the overall F1 score of 80.2%, which is in line with the state-of-the-art algorithms. In addition, the proposed spectro-temporal estimation approach outperforms standard time-frequency analysis methods, that is, short-time Fourier transform, continuous wavelet transform, and autoregressive spectral estimation for AF detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call