Abstract

In recent years, operando/in situ X-ray absorption spectroscopy (XAS) has become an important tool in the electrocatalysis community. However, the high catalyst loadings often required to acquire XA-spectra with a satisfactory signal-to-noise ratio frequently imply the use of thick catalyst layers (CLs) with large ion- and mass-transport limitations. To shed light on the impact of this variable on the spectro-electrochemical results, in this study we investigate Pd-hydride formation in carbon-supported Pd-nanoparticles (Pd/C) and an unsupported Pd-aerogel with similar Pd surface areas but drastically different morphologies and electrode packing densities. Our in situ XAS and rotating disk electrode (RDE) measurements with different loadings unveil that the CL-thickness largely determines the hydride formation trends inferred from spectro-electrochemical experiments, therewith calling for the minimization of the CL-thickness in such experiments and the use of complementary thin-film control measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.